Introduction to Vector Graphics | What is a vector Graphic ?

Vector graphics
From Wikipedia, the free encyclopedia

Example showing effect of vector graphics versus raster graphics. The original vector-based illustration is at the left. The upper-right image illustrates magnification of 90x as a vector image. The lower-right image illustrates the same magnification as a bitmap image. Raster images are based on pixels and thus scale with loss of clarity, while vector-based images can be scaled indefinitely without degrading quality.

Vector graphics is the use of geometrical primitives such as points, lines, curves, and shapes or polygon(s), which are all based on mathematical equations, to represent images in computer graphics.

Vector graphics formats are complementary to raster graphics, which is the representation of images as an array of pixels, as it is typically used for the representation of photographic images.[1] There are instances when working with vector tools and formats is the best practice, and instances when working with raster tools and formats is the best practice. There are times when both formats come together. An understanding of the advantages and limitations of each technology and the relationship between them is most likely to result in efficient and effective use of tools

Overview

Computer displays are made up from grids of small rectangular cells called pixels. The picture is built up from these cells. The smaller and closer the cells are together, the better the quality of the image, but the bigger the file needed to store the data. If the number of pixels is kept constant, the size of each pixel will grow and the image becomes grainy (pixellated) when magnified, as the resolution of the eye enables it to pick out individual pixels.
Vector graphics files store the lines, shapes and colours that make up an image as mathematical formulae. A vector graphics program uses these mathematical formulae to construct the screen image, building the best quality image possible, given the screen resolution. The mathematical formulae determine where the dots that make up the image should be placed for the best results when displaying the image. Since these formulae can produce an image scalable to any size and detail, the quality of the image is limited only by the resolution of the display, and the file size of vector data generating the image stays the same. Printing the image to paper will usually give a sharper, higher resolution output than printing it to the screen but can use exactly the same vector data file.


Editing vector graphics

Vector graphic drawing software is used for creating and editing vector graphics. The image can be changed by editing screen objects which are then saved as modifications to the mathematical formulae. Mathematical operators in the software can be used to stretch, twist, and colour component objects in the picture or the whole picture, and these tools are presented to the user intuitively through the graphical user interface of the computer. It is possible to save the screen image produced as a bitmap/raster file or generate a bitmap of any resolution from the vector file for use on any device.
The size of the file generated will depend on the resolution required, but the size of the vector file generating the bitmap/raster file will always remain the same. Thus, it is easy to convert from a vector file to a range of bitmap/raster file formats but it is much more difficult to go in the opposite direction, especially if subsequent editing of the vector picture is required. It might be an advantage to save an image created from a vector source file as a bitmap/raster format, because different systems have different (and incompatible) vector formats, and some might not support vector graphics at all. However, once a file is converted from the vector format, it is likely to be bigger, and it loses the advantage of scalability without loss of resolution. It will also no longer be possible to edit individual parts of the image as discrete objects.The file size of vector graphic depends on the number of graphic elements it contains.
Vector formats are not always appropriate in graphics work. For example, devices such as cameras and scanners produce raster graphics that are impractical to convert into vectors, and so for this type of work, the editor will operate on the pixels rather than on drawing objects defined by mathematical formulae. Comprehensive graphics tools will combine images from vector and raster sources, and may provide editing tools for both, since some parts of an image could come from a camera source, and others could have been drawn using vector tools.

Applications

One of the first uses of vector graphic displays was the US SAGE air defense system. Vector graphics systems were only retired from U.S. en route air traffic control in 1999, and are likely still in use in military and specialised systems. Vector graphics were also used on the TX-2 at the MIT Lincoln Laboratory by computer graphics pioneer Ivan Sutherland to run his program Sketchpad in 1963.
Subsequent vector graphics systems, most of which iterated through dynamically modifiable stored lists of drawing instructions, include Digital's GT40.[2] There was a home gaming system that used vector graphics called Vectrex as well as various arcade games like Asteroids and Space Wars. Storage scope displays, such as the Tektronix 4014, could display vector images but not modify them without first erasing the display.
Modern vector graphics displays can sometimes be found at laser light shows, where two fast-moving X-Y mirrors are used to rapidly draw shapes and text on a screen.
The term "vector graphics" is mainly used today in the context of two-dimensional computer graphics. It is one of several modes an artist can use to create an image on a raster display. Other modes include text, multimedia, and 3D rendering. Virtually all modern 3D rendering is done using extensions of 2D vector graphics techniques. Plotters used in technical drawing still draw vectors directly to paper.

What is a vector Graphic ?

Definition: A vector image is one of the two major graphic types (the other being bitmap). Vector graphics are made up of many individual objects. Each of these objects can be defined by mathematical statements and has individual properties assigned to it such as color, fill, and outline. Vector graphics are resolution independent because they can be output to the highest quality at any scale.
Software used to create vector graphics is sometimes referred to as object-based editing software. Common vector formats include AI (Adobe Illustrator), CDR (CorelDRAW), CGM (Computer Graphics Metafile), SWF (Shockwave Flash), and DXF (AutoCAD and other CAD software). Vector graphics tend to have much smaller file sizes than raster-based bitmaps.
If you have the Flash plug-in installed on your computer, you can right click on the image below to zoom in. When you zoom in on the image, notice that the edges of the text are always crisp and sharp at any scale. This is why vector images are called resolution independent. Currently, the only way vector images can be displayed on the Web is by requiring viewers to install a browser plug-in.






No comments:

Post a Comment

Please leave your comments about these wallpapers..

LinkWithin

Related Posts with Thumbnails